A Novel Neural Fuzzy Approach for Diagnosis of Potassium Disturbances
نویسندگان
چکیده
In this paper, a neural fuzzy system for the diagnosis of potassium disturbances is presented. This paper develops an adaptive neuro-fuzzy expert system that can provide accurate diagnosis of potassium disturbances. The proposed diagnostic approach has many attractive features. First, it provides an efficient tool for diagnosis of K+ disturbances and aids clinicians, especially the non-expert ones, in providing fast and accurate diagnosis of K+ disturbances in critical time. Second, it significantly reduces the time needed to accomplish precise diagnosis of K+ disturbances and thus enhances the healthcare standards. Third, it is capable of diagnosing the different types of potassium disturbances using a hybrid neural fuzzy approach. Finally, it has good accuracy (higher than 87%), specificity (100%), and average sensitivity (83%). The performance of the proposed diagnostic system was experimentally evaluated and the achieved results confirmed that the proposed system is efficient and accurate in diagnosing K+ disturbances. DOI: 10.4018/978-1-4666-2797-0.ch013
منابع مشابه
A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملA Novel Fuzzy and Artificial Neural Network Representation of Overcurrent Relay Characteristics
Accurate models of Overcurrent (OC) with inverse time relay characteristics play an important role for coordination of power system protection schemes. This paper proposes a new method for modeling OC relays curves. The model is based on fuzzy logic and artificial neural networks. The feed forward multilayer perceptron neural network is used to calculate operating times of OC relays for various...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJHISI
دوره 6 شماره
صفحات -
تاریخ انتشار 2011